Trigonometry#
Trigonometry studies relationships involving lengths and angles of triangles.
Unit Circle#
Sin, Cos, Tan#
\[\sin^2(\alpha) + \cos^2(\alpha) = 1\]
with angle \(\alpha\)
Explanation:
In the unit circle, the sinus and cosinus at a given angle form an orthogonal triangle with the edges \(a,b,c\). The length of the hypotenuse \(c\) corresponds to the radius \(r\), which equals 1 (unit circle). Thus, we can apply the law of Pythagoras \(a^2 + b^2 = c^2\) with \(a = \sin(\alpha)\), \(b = \cos(\alpha)\), and \(c = 1\).
\(\(\sin(\alpha) = \frac{b}{r}\)\) with angle \(\alpha\), radius \(r\)
Symmetry: \(\sin(\alpha) = - \sin(α)\)
\(\(\cos(\alpha) = \frac{a}{r}\)\) with angle \(\alpha\), radius \(r\)
Symmetry: \(\cos(\alpha) = \cos(-\alpha)\)
\(\(\tan(\alpha) = \frac{\cos(\alpha)}{\sin(\alpha)} = \frac{b}{a}\)\) with angle \(\alpha\)
Properties | Equation |
---|---|
Symmetry | \(\sin(-x)=-\sin(x)\) \(\cos (-x) = \cos (x)\) |
Complex | \(e^{\i x}=\cos(x)+\i\sin(x)\) \(e^{-\i x}=\sin(x)-\i\cos(x)\) |
\(x\) \(\scriptstyle{ \alpha }\) |
\(0\) \(\scriptstyle{0^\circ}\) |
\(\pi / 6\) \(\scriptstyle{30^\circ}\) |
\(\pi / 4\) \(\scriptstyle{45^\circ}\) |
\(\pi / 3\) \(\scriptstyle{60^\circ}\) |
\(\frac{1}{2}\pi\) \(\scriptstyle{90^\circ}\) |
\(\pi\) \(\scriptstyle{180^\circ}\) |
\(1\frac{1}{2}\pi\) \(\scriptstyle{270^\circ}\) |
\(2 \pi\) \(\scriptstyle{360^\circ}\) |
---|---|---|---|---|---|---|---|---|
\(\sin\) | \(0\) | \(\frac{1}{2}\) | \(\frac{1}{\sqrt{2}}\) | \(\frac{\sqrt 3}{2}\) | \(1\) | \(0\) | \(-1\) | \(0\) |
\(\cos\) | \(1\) | \(\frac{\sqrt 3}{2}\) | \(\frac{1}{\sqrt 2}\) | \(\frac{1}{2}\) | \(0\) | \(-1\) | \(0\) | \(1\) |
\(\tan\) | \(0\) | \(\frac{\sqrt{3}}{3}\) | \(1\) | \(\sqrt{3}\) | \(\pm \infty\) | \(0\) | \(\mp \infty\) | \(0\) |
Addition | Integrals |
---|---|
\(\cos (x - \frac{\pi}{2}) = \sin x\) | \(\int x \cos(x) \diff x = \cos(x) + x \sin(x)\) |
\(\sin (x + \frac{\pi}{2}) = \cos x\) | \(\int x \sin(x) \diff x = \sin(x) - x \cos(x)\) |
\(\sin 2x = 2 \sin x \cos x\) | \(\int \sin^2(x) \diff x = \frac12 \bigl(x - \sin(x)\cos(x) \bigr)\) |
\(\cos 2x = 2\cos^2 x - 1\) | \(\int \cos^2(x) \diff x = \frac12 \bigl(x + \sin(x)\cos(x) \bigr)\) |
\(\sin(x) = \tan(x)\cos(x)\) | \(\int \cos(x)\sin(x) = -\frac12 \cos^2(x)\) |
Hyperboles sinh, cosh, tanh#
\(\cosh (x) + \sinh (x) = e^{x}\) \(\cosh^2 (x) - \sinh^2 (x) = 1\)
Inverse#
Cardinal Sinus#
normalized: \(\(\sinc(x) = \frac{\sin(\pi x)}{\pi x}\)\)