Number Converter#
This is a converter for showing numbers in different number systems.
Type in number:
C/Ada Notation: 0x..
/ 16#..
(hex), 0b..
/ 2#..
(bin)
Result | |
---|---|
Decimal | 255 |
Hexadecimal | 0xFF |
Octal | 0377 |
Binary | 0b11111111 |
Memory Inspection#
Number stored as unsigned 32bit Integer at address 0x1000:
Endian | 0x1000 |
0x1001 |
0x1002 |
0x1003 |
---|---|---|---|---|
Little (bin) | 11111111 | 00000000 | 00000000 | 00000000 |
Little (hex) | FF | 00 | 00 | 00 |
Big (bin) | 00000000 | 00000000 | 00000000 | 11111111 |
Big (hex) | 00 | 00 | 00 | FF |
Data Types#
int
, short
, and word
depend on the architecture.
Type | Limit Min | Limit Max | |
---|---|---|---|
U8, Char | 0 | .. | \(255 = 2^8 - 1\) |
U16 | 0 | .. | \(65535 = 2^{16} -1\) |
U32 | 0 | .. | \(4\,294\,967\,295\) |
U64 | 0 | .. | \(18\;446\;744\;073\;709\;551\;615\) |
U\(x\) | 0 | .. | \(2^x - 1\) |
I8 | -128 | .. | 127 |
I16 | −32768 | .. | 32767 |
I32 | -2 147 483 648 | .. | 2.147.483.647 |
I\(x\) | \(-2^{(x-1)}\) | .. | \(2^{(x-1)} - 1\) |
Useful approximations: \(2^{10} \approx 1k\) \(2^{20} \approx 1M\) \(2^{30} \approx 1G\)