Moment#
A moment is a specific quantitative measure of the shape of a function.
The \(n\)-th moment of a continuous function \(f(x)\) of a real variable \(x\) about a value \(c\) is
\[\mu _{n}=\int _{-\infty }^{\infty }(x-c)^{n}\,f(x)\diff x\]
Mean (\(n = 1\))#
discrete:
\[\mu_1 =\sum x_i \cdot P(x)\]
with result \(x\) and probability function \(P()\)
continuous:
\[\operatorname \mu_1 = \int _{\mathbb {R}} x \cdot f(x)\diff x\]
Variance (\(n = 2\))#
discrete: \(\(\mu_2 =\sum x \cdot P(x)\)\)
Central Moments Comparison#
Moment | Statistics | Mechanics |
---|---|---|
0. | Total P=1.0 | mass |
1. | mean | center of mass |
2. | variance | rotational inertia |
3. | skewness |