Exponential and Logarithm#
Exponentiation \(b^n\) corresponds to \(n\) repeated multiplication of the base \(b\):
\[b^{n} = \underbrace{b \times \dots \times b}_{n\,{\textrm {times}}}\]
with \(b \in \R\) and \(n \in \N\).
Rules#
For \(n, m \in \Z\)
Sum | \(\displaystyle b^{m+n} = b^{m} \cdot b^{n}\) |
\(\left( b^{m} \right)^{n} = b^{m \cdot n}\) | |
Product | \((b \cdot c)^{n} = b^{n} \cdot c^{n}\) |
Exponential Function#
\[\exp(x) \equiv e^x := \lim\limits_{n \rightarrow \infty} \left( 1 + \frac{x}{n} \right)^n = \sum\limits_{n = 0}^{\infty} \frac{x^n}{n!}\]
with the exponential function \(\exp: \R \ra \R\), the argument \(x \in \R\), the Euler number \(\mathrm{e} = 2,718281828..\)
For complex numbers: \(\(\e^{\cx z} = \e^{a + b\i} = \e^a \cdot ( \cos b + \i \sin b )\)\) with \(\cx z \in \C\), \(a, b \in \R\) and the imaginary unit \(\i\).
Logarithm#
The logarithm is the inverse function to exponentiation.
\[\log_{b}(x) = y \qquad \text{exactly if} \qquad b^{y} = x\]
with \(b, x, y \in \R\)
Calculation Rules#
For \(b, x, y \in \R\)
Product | \(\displaystyle \log_{b}(x \cdot y) = \log_{b} x + \log_{b} y\) |
Quotient | \(\displaystyle \log_{b} \frac{x}{y} = \log_{b} x - \log_{b} y\) |
Power | \(\displaystyle \log_{b} \left( x^{p} \right) = p \cdot \log_{b}x\) |
Root | \(\displaystyle \log_{b} \sqrt[p]{x} = \frac{\log_b x}{p}\) |
Change base | \(\displaystyle \log_{b} x = \frac{\log_{k} x}{ \log_{k} b }\) |
Other notations: \(\log_2 \equiv \lb\), \(\log_{\e} \equiv \ln\), , \(\log_{10} \equiv \lg\)
Taylor Series#
\[\ln(z)={\frac {(z-1)^{1}}{1}}-{\frac {(z-1)^{2}}{2}}+{\frac {(z-1)^{3}}{3}}-{\frac {(z-1)^{4}}{4}}+\cdots\]