Differential Equation#
A differential equation is a mathematical equation that relates some function with its derivatives. In applications, the functions usually represent physical quantities, the derivatives represent their rates of change, and the equation defines a relationship between the two.
Differential Equation of n-th Order#
\[a_n y^{(n)} + ... + a_1 y' + a_0 y = b_m x^{(m)} + ... + b_1 x' + b_0 x\]
with the unknown function \(y\) and its \(n\) derivates \(y',y'',...\), the known function \(x\) and the coefficients \(a_i, b_j\)
DGL-Systeme#
Jede DGL lässt sich reduzieren auf ein DGL-System 1. Ordnung:
-
Substituiere \(x_i := y^{(i-1)}\) und drücke \(\dot x_i\) durch \(x_1,...,x_n\) aus. \(\Ra\) \boxed{ \dot{\vec x}(t) = \ma A \vec x(t) + \vec s(t) } mit \(\vec x_{\ir ges} = \vec x_{\ir hom} + \vec x_{\ir part}\) Hom. Lösung: 1. Bestimme EW \(\lambda_i\) und Basis aus EV \(\vec b_i\) von \(\ma A\)
-
\(\vec x_{\ir hom} = \vec c \cdot e^{(x-x_0)\ma A} = \sum\limits_{i = 0}^n c_i \cdot e^{\lambda_i x} \cdot \vec b_i\)
-
Bestimmung der Konstanten durch einsetzen der Anfangsbedingungen!
Lösen von homogenen DGLs 2. Ordnung#
Gegeben: Homogene Differnetialgleichungen der Form \(\vec{\dot x} = \ma A \vec x\) mit Anfangswerten \(x_{0,1}\) und \(x_{0,2}\)
Depending on the Eigenvalues \(\lambda_1, \lambda_2 \in \R\)
1. If Eigenvalues are real and inequal: \(\Large \lambda_1 \ne \lambda_2\)#
Matrix \(\Lambda\) | Eigenwerte | \(\vec x = 0\) | Name | Portrait |
---|---|---|---|---|
\(\mat{\lambda_1 & 0 \\ 0 & \lambda_2}\) | \(\lambda_1 < 0 < \lambda_2\) | instable | Sattelpunkt | |
\(\lambda_2 < 0, \lambda_1 < 0\) | stable | Knoten 2 | ||
\(0 < \lambda_1, 0 < \lambda_2\) | instable | Knoten 2 | ||
\(\mat{0 & 0 \\ 0 & \lambda_2}\) | \(\lambda_1 = 0,\ \lambda_2 < 0\) | stabil | Kamm | |
\(\lambda_1 = 0,\ \lambda_2 > 0\) | instable | Kamm |
2. If Eigenvalues are real and equal: \(\Large \lambda_1 = \lambda_2\)#
Matrix \(\Lambda\) | Eigenwerte | \(\vec x = 0\) | Name | Portrait |
---|---|---|---|---|
\(\mat{\lambda & 0 \\ 0 & \lambda}\) | \(\lambda < 0\) | stabil | Knoten 1 | |
\(\lambda > 0\) | instable | Knoten 1 | ||
\(\mat{\lambda & 1 \\ 0 & \lambda}\) | \(\lambda < 0\) | stabil | Knoten 3 | |
\(\lambda > 0\) | instable | Knoten 3 | ||
\(\mat{0 & 0 \\ 0 & 0 }\) | \(\lambda = 0\) | stabil | Ruheebene | |
\(\mat{0 & 1 \\ 0 & 0 }\) | \(\lambda = 0\) | instable | Ruhegerade | } |
3. If Eigenvalues are complex and equal: \(\Large \cx \lambda_1 = \cx \lambda^*_2\)#
Matrix \(\Lambda\) | Eigenwerte | \(\vec x = 0\) | Name | Portrait |
---|---|---|---|---|
\(\mat{\alpha & -\beta \\ \beta & \alpha}\) | \(\alpha < 0,\ \beta \ne 0\) | stabil | Strudel | |
\(\alpha > 0,\ \beta \ne 0\) | instable | Strudel | ||
\(\mat{0 & -\beta \\ \beta & 0}\) | \(\alpha = 0,\ \beta \ne 0\) | stabil | Wirbel |
Zeitverlauf immer von \(\vec q_j\) nach \(\vec q_r\) bzw. von \(\vec q_r\) nach \(-\vec q_j\)
Lösung für inhomogene DGL#
Inhomogene DGL (\(\vec v \ne 0\)) mit singulärer Matrix \(\ma A\) (nicht entkoppelbar):
Matrix \(\Lambda\) | Eigenwerte | \(\vec x = 0\) | Name | Portrait |
---|---|---|---|---|
\(\mat{0 & 0 \\ 0 & \lambda_2}\) | \(\lambda_1 = 0, \lambda_2 < 0\) | instable | Kamm | |
\(\mat{0 & 1 \\ 0 & 0 }\) | \(\lambda = 0\) | instable | Knoten |