Boolean Algebra#
The boolean algebra \(({0,1};\cdot , +, \overline{x})\)
Boolean Algebra | |
---|---|
Kommutativ | \(x \cdot y = y \cdot x\) |
\(x + y = y + x\) | |
Assoziativ | \(x \cdot (y \cdot z) = (x \cdot y) \cdot z\) |
\(x + (y + z) = (x + y) + z\) | |
Distributiv | \(x \cdot (y + z) = x \cdot y + x \cdot z\) |
\(x + (y \cdot z) = (x + y) \cdot (x + z)\) | |
Indempotenz | \(x \cdot x = x\) |
\(x + x = x\) | |
Absorbtion | \(x \cdot (x+y) = x\) |
\(x + (x \cdot y) = x\) | |
Neutral | \(x \cdot 1 = x\) |
\(x + 0 = x\) | |
Dominant | \(x \cdot 0 = 0\) |
\(x + 1 = 1\) | |
Komplement | \(x \cdot \overline{x} = 0\) |
\(x + \overline{x} = 1\) | |
\(\overline{\overline{x}} = x\) | |
De Morgan | \(\overline{x \cdot y} = \overline{x} + \overline{y}\) |
\(\overline{x + y} = \overline{x} \cdot \overline{y}\) |